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Hydrogen Atom in N Dimensions

Sami M. Al-Jaber1

Received August 5, 1997

Some aspects of the N-dimensional hydrogen atom are discussed. The complete
solution for the energy eigenfunctions is presented and the radial distribution
function is examined. Degeneracy of energy levels, expectation values ( ^ 1/r & and
^ 1/r2 & ), and the virial theorem are considered. It is shown that the effect of the
effective potential manifests itself in some of the aspects being investigated.

1. INTRODUCTION

Over the past decade there has been much of discussion of problems

involving N dimensions. Romeo (1995) studied the Wentzel±Kramers±

Brilliouin (WKB) approximation in connection with hyperspherical quantum

billiards. Yanez et al. (1994) investigated the position and momentum infor-

mation entropies of N-dimensional systems. The generalization of Fermi
pseudopotentials to higher dimensions was illustrated by Wo’ dkiewic (1991).

Random walks and moments of inertia in N dimensions have been considered

by Bender et al. (1994) and Bender and Mead (1995). Fukutaka and Kashiwa

(1987) considered the formulation of path integrals and their quantization on

N-dimensional sphere. Recently the quantization of angular momentum in N
dimensions has been described by Al-Jaber (1995).

It is the purpose of this paper to investigate some aspects of the hydrogen

atom in N-dimensional space. In Section 2, the energy eigenfunctions of

bound states are considered. In Section 3, the radial distribution function in

N dimensions is examined, and in particular the one which corresponds to

the maximum value of angular momentum. In Section 4, the degeneracy of
any energy level of the N-dimensional hydrogen atom is determined. In
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Section 5, the Feynman±Hellman theorem is used in order to find the expecta-

tion values ^ 1/r & and ^ 1/r2 & and to examine the virial theorem in N dimensions.

2. ENERGY EIGENFUNCTIONS

The eigenvalue equation for a hydrogen atom is

2 " 2

2 m
¹ 2 c (r) 2

Ze2

r
C (r) 5 E C (r) (1)

where m is the reduced mass and Ze is the nuclear charge. In the N-dimensional

space, the Laplacian operator in polar coordinates (r, u 1, u 2, . . . , u N 2 2, F )

of RN is

¹ 2 5 r1 2 N -
- r 1 rN 2 1 -

- r 2 1
1

r2 L 2 (2)

where L 2 is a partial differential operator on the unit sphere SN 2 1. Separation

of variables of in equation (1) reduces it to two separate equations:

L 2f 1 b f 5 0 (3)

r1 2 N d

dr 1 rN 2 1 dR

dr 2 2
b
r2 R 1

2 m
" 2 1 Ze2

r
2 E 2 R 5 0 (4)

where b is a separation constant whose values (which are the eigenvalues

of 2 L 2) are (Shimakura, 1992)

b 5 L(L 1 N 2 2) (5)

where L 5 0, 1, 2, . . . .

With E , 0 for bound states, we define r and l as

r 5 [8 m ( 2 E)/ " 2]1/2r, l 5 F Z2e4 m
2 " 2( 2 E) G

1/2

and hence the radial equation for R( r ) becomes

d2R

d r 2 1
N 2 1

r
dR

d r
2

L(L 1 N 2 2)

r 2 R 1 1 l r 2
1

4 2 R 5 0 (6)

We look for solutions for R( r ) in the form

R( r ) 5 r 1e 2 r /2S( r ) (7)

The substitution of equation (7) into equation (6) yields
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d 2S

d r 2 1 F 2L 1 N 2 1

r
2 1 G ds

d r
1 F l 2 L 2 (N 2 1)/2

r G S 5 0 (8)

A series expansion of S( r ),

S( r ) 5 o
`

j 5 0

aj r j (9)

gives us the recursion relation

aj 1 1 5
j 1 L 1 (N 2 1)/2 2 l

( j 1 1)( j 1 2L 1 N 2 1)
aj (10)

In order that the function in equation (7) have an acceptable asymptotic

behavior, the series expansion of equation (9) must terminate, which means
that S( r ) must be a polynomial in r . Let the highest power of r appearing

in S( r ) be nr , where nr 5 0, 1, 2, . . . ; then the coefficient anr 1 1 5 0, and

thus the recursion formula (10) yields

l 5 nr 1 L 1
N 2 1

2
(11)

If we introduce the principal quantum number

n8 5 nr 1 L 1
N 2 1

2
(12)

then equation (11) becomes

l 5 n8 (13)

Comparing the associated Laguerre differential equation

F d 2

d r 2 1 1 p 1 1

r
2 1 2 d

d r
1 (q 2 p) G Lp

q( r ) 5 0 (14)

with equation (8) gives

P 5 2L 1 N 2 2, q 5 n8 1 L 1 (N 2 3)/2 (15)

The effective potential in N dimensions is (Al-Jaber, 1997)

Veff(r) 5 V(r) 1 F L(L 1 N 2 2) 1
(N 2 1)(N 2 3)

4 G 1

r 2 (16)

so if we set
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L8(L8 1 1) 5 L(L 1 N 2 2) 1
(N 2 1)(N 2 3)

4

then we get

L8 5 L 1
N 2 3

2
(17)

But in 3-dimensional space, the principal quantum number n is given by

(Bransden and Joachain, 1989)

n 5 nr 1 L 1 1 (18)

Equations (17) and (18) imply that the principal quantum number n8 in N
dimensions is related to that in three dimensions, n, by

n8 5 n 1
N 2 3

2
(19)

and therefore (7) and (15) yield the radial solution, which is

RnL( r ) 5 A e 2 r /2 r LL(2L 1 N 2 2)
(n 1 L 1 N 2 3)( r ) (20)

where A is a normalization factor whose value is determined from the

requirement

A2 #
`

0 F e 2 r /2 r LL2L 1 N 2 2
n 1 L 1 N 2 3( r ) G

2

r N 2 1dr 5 1 (21)

Using the definition of r and l and with the aid of equation (13), we get

r 5
2Z

a(n 1 (N 2 3)/2)
r (22)

where a ( 5 " 2/ m e2) is the Bohr radius. Hence equation (21) becomes

A2 1 a(n 1 (N 2 3)/2)

2Z 2
N

#
`

0

e 2 r r 2(L 1 (N 2 3)/2)[L2L 1 N 2 2
n 1 L 1 N 2 3( r )]2 r 2 d r 5 1 (23)

One should notice here that the integral in equation (23) is the one that would

get if, in the corresponding integral of the three-dimensional case, L and n
were replaced by L 1 (N 2 3)/2 and n 1 (N 2 3)/2, respectively. Therefore,

equation (23) yields

A 5 F 1 2Z

a(n 1 (N 2 3)/2) 2
N

(n 2 L 2 1)!

2(n 1 (N 2 3)/2)[(n 1 L 1 N 2 3)!]3 G
1/2

(24)

Now we are in a position to write the complete energy eigenfunctions of the

N-dimensional hydrogen atom, namely
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C (r, u 1, u 2, . . . , u N 2 2, f ) 5 ARnL(r)Y m
L ( u 1, u 2, . . . , u N 2 2, f ) (25)

where A and RnL(r) are given by equations (20) and (24), respectively, and

Y m
L ( u 1, . . . , u N 2 2, f ) are hyperspherical harmonics of degree L on the

SN 2 1-sphere.
The orthonormality and the addition theorem for the M linearly indepen-

dent hyperspherical harmonics Y m
L of degree L on the SN 2 1-sphere are (Grosche

and Steiner, 1995)

# d V Y m8
L8 ( V )Y m

L ( V ) 5 d LL8, d mm8 (26)

and

o
M

m 5 1

Y m
L ( V 1)Y

m
L ( V 2) 5

1

V (N )

2L 1 N 2 2

N 2 2
C (N 2 2)/2

L (cos u 1,2) (27)

Here V 5 X/r denotes a unit vector in RN, V (N ) 5 2 p N/2 G (N/2) the volume
of the N-dimensional unit sphere, and M 5 (2L 1 N 2 2)(L 1 N 2 3)!/

[L!(N 2 3)!]. The C N 2 2
L in equation (27) are the Gegenbauer polynomials.

One should notice that equation (25) reduces to the well-known energy

eigenfunctions for the three-dimensional hydrogen atom when N 5 3.

3. THE RADIAL DISTRIBUTION FUNCTION

We define the radial distribution function DnL(r) as

DnL(r) 5 r N 2 1 | RnL(r) | 2 (28)

which gives the probability per unit length that the electron is to be found

a distance r from the nucleus. The aim is to discuss the behavior of the radial

distribution function when the angular momentum L has its maximum value,

Lmax. This corresponds to nr 5 0 in equation (12), and using equation (19),
this gives

Lmax 5 n8 2 1 N 2 1

2 2 5 n 2 1 (29)

The degree of the associated Laguerre polynomials in equation (20) when

L 5 Lmax is zero. In that case,

Rn,n 2 1(r) , r n 2 1 e 2 zr/a[n 1 (N 2 3)/2] (30)

and hence Dn,n 2 1(r) will exhibit a maximum at a value of r that can be found

by solving the equation
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d

dr
Dn,n 2 1(r) 5

d

dr F r 2n 1 N 2 3e 2 2zr/a[n 1 (N 2 3)/2] G 5 0

which gives

r 5
a

z 1 n 1
N 2 3

2 2
2

(31)

Now our result is straightforward. For the case N 5 3, equation (31) reduces

to the usual three-dimensional case which is found in standard quantum

mechanics texts (e.g., Bransden and Joachain, 1989). For the case N . 3, r
is larger than that of the three-dimensional result. This is due to the additional

term in the effective potential [second term in brackets of equation (16)],
which is repulsive in this case and hence tries to push the particle further

away from the nucleus. For N , 3, r is smaller than the three-dimensional

result. Again this is due to the additional term in the effective potential of

equation (16), which is attractive in this case and hence it tries to attract the

particle toward the nucleus.

4. DEGENERACY

The purpose here is to give a simple prescription for determining the

degeneracy of any energy level of the hydrogen atom in N dimensions. One
should recall that for any spherically symmetric potential in N dimensions

(such as the one under consideration) the SchroÈ dinger equation can be sepa-

rated into an ordinary differential equation for the radial part and a partial

differential equation for the angular part. The solutions to the angular part

are the hyperspherical harmonics Y m
L . If the potential has no other symmetries

beyond rotational invariance, the degeneracies of energy levels are therefore

the multiplicities of the hyperspherical harmonics for fixed L.
In N dimensions the hyperspherical harmonics depend on N 2 1 angular

coordinates u 1, u 2, . . . , u N 2 2, f whose ranges are 0 # u J # p and 0 # f #
2 p . Each hyperspherical harmonic is determined by N 2 1 integers L, m1, m2,

. . ., mN 2 2 that can assume all values consistent with the inequalities L $ m1

$ m2 . . . $ | mN 2 2 | $ 0. On enumerating all the distinct sets of m values

that are possible for a given L (taking into account both positive and negative

values of mN 2 2), one finds that the degeneracy (deg) is given by

deg 5 o
n 2 1

l 5 0
o
L

m
1
5 0

o
m

1

m
2
5 0

? ? ? o
m

N 2 3

2 m
N 2 3

| mN 2 2 | (32)

for N . 3 and
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deg 5 o
n 2 1

L 5 0
o
1 L

2 L
| m1 | 5 o

n 2 1

L 5 0

(2L 1 1) 5 n2 (33)

for N 5 3. The result of equation (33) is the known degeneracy for the three-
dimensional case. The case N 5 2 needs special attention. The eigenvalues of

equation (5) become, for the N 5 2 case, L2 and all mj 5 0. Therefore the

degeneracy in this case is

deg 5 o
n 2 1

2 (n 2 1)

| L | 5 2n 2 1 (34)

which is known from the solutions of two-dimensional problems. With the
help of equations (32)±(34), results for the degeneracies of the hydrogen

atom in N dimensions are given in Table I, for N 5 2±10 and n 5 1±5.

5. EXPECTATION VALUES AND VIRIAL THEOREM

Some expectation values, such as ^ 1/r & and ^ 1/r2 & , and the virial theorem

for the N-dimensional hydrogen atom can be found in a direct way by applying

the Feynman±Hellman theorem (Griffiths, 1995). Suppose the Hamiltonian

H for a particular quantum system is a function of some parameter h ; let

En( h ) and c n( h ) be the eigenvalues and the eigenfunctions of H( h ). The
Feynman±Hellman theorem states that

- En

- n
5 ^ C n |

- H

- h
| C n & (35)

The effective Hamiltonian for the radial wave functions is

Table I. Degeneracies of the Hydrogen Atom in N Dimensions (N 5 2±10) for Principal

Quantum Number n 5 1±5

Degeneracy

n 5 1 n 5 2 n 5 3 n 5 4 n 5 5

2 1 3 5 7 9

3 1 4 9 16 25

4 1 5 14 30 55

5 1 6 20 50 105

6 1 7 27 77 182

7 1 8 35 112 294

8 1 9 44 156 450

9 1 10 54 210 665

10 1 11 65 275 935
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H 5
2 " 2

2 m
d2

dr 2 1
" 2

2 m
L8(L8 1 1)

r 2 2
e2

r
(36)

With the help of equation (17), the above effective Hamiltonian becomes

H 5
2 " 2

2 m
d 2

dr 2 1
" 2

2 m r2 1 L 1
N 2 3

2 2 1 L 1
N 2 1

2 2 2
e2

r
(37)

The eigenvalues, using equations (12) and (19), are

En 5
2 m e4

2 " 2

1

(nr 1 L 1 (N 2 1)/2)2 (38a)

5
2 m e4

2 " 2

1

(n 1 (N 2 3)/2)2 (38b)

In order to find ^ 1/r & , let the parameter h 5 e:

- En

- h
5

2 2 m e3

" 2

1

(n 1 (N 2 3)/2)2

^ C n |
- H

- e
| C n & 5 2 2e ^ 1/r &

and therefore the Feynman±Hellman theorem yields

K 1

r L 5
1

a(n 1 (N 2 3)/2)2 (39)

where a 5 " 2/ m e2.
In order to find ^ 1/r2 & , let the parameter h 5 L:

- En

- L
5

m e4

" 2(n 1 (N 2 3)/2)3

, C n |
- H

- L
| C n . 5

" 2

2 m
(2L 1 N 2 2) ^ 1/r 2 &

and hence the Feynman±Hellman theorem gives

K 1

r 2 L 5
1

a2(n 1 (N 2 3)/2)3(L 1 (N 2 3)/2)
(40)

The expectation values given in equations (39) and (40), reduce to their

counterparts in three dimensions when N 5 3. As is also evident, these

expectation values are less (greater) than the corresponding expectations in

three dimensions for N . 3 (N , 3). This is again due to the extra additional
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term in the effective potential, which is repulsive for N . 3 and attractive

for N , 3. Finally, if we let the parameter h 5 m , then

- En

- m
5

1

m
En

and

^ C n |
- H

- m
| C n & 5 2

1

m
^ H 2 V &

and thus the Feynman±Hellman theorem yields

En 5 2 ^ H 2 V &

which gives

^ V & 5 2 2 ^ T & (41)

This is the well-known virial theorem. Equation (41) shows that the virial
theorem is the same in all dimensions.

6. CONCLUSION

In this paper, we have investigated some aspects of the hydrogen atom

in N dimensions. The energy eigenfunctions are found and it is found that

they are dimension dependent. It is shown that the effect of the effective

potential, which is dimension dependent, manifests itself in some of the
aspects that are considered here. We discussed the radial distribution function

and in particular the one which corresponds to the maximum value of angular

momentum. It is shown that the value of r at which the radial distribution

function is maximum increases with N when the dimension N is greater than

three and decreases with N when N is smaller than three. This is so because
the effective potential becomes more repulsive when N . 3 and less repulsive

when N , 3. We have also considered the degeneracy of the energy levels,

which increases with the dimension N. Furthermore, with the aid of the

Feynman±Hellman theorem, we have calculated the expectation values ^ 1/r &
and ^ 1/r 2 & , whose results are justified by the effect of the effective potential.

Finally, we demonstrated that the virial theorem remains invariant when
varying the dimensions N.
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